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ABSTRACT
In this paper we develop a multi-modal video analysis al-
gorithm to predict where a sonographer should look next.
Our approach uses video and expert knowledge, defined by
gaze tracking data, which is acquired during routine first-
trimester fetal ultrasound scanning. Specifically, we propose
a spatio-temporal convolutional LSTMU-Net neural network
(cLSTMU-Net) for video saliency prediction with stochastic
augmentation. The architecture design consists of a U-Net
based encoder-decoder network and a cLSTM to take into ac-
count temporal information. We compare the performance of
the cLSTMU-Net alongside spatial-only architectures for the
task of predicting gaze in first trimester ultrasound videos.
Our study dataset consists of 115 clinically acquired first
trimester US videos and a total of 45, 666 video frames. We
adopt a Random Augmentation strategy (RA) from a stochas-
tic augmentation policy search to improve model performance
and reduce over-fitting. The proposed cLSTMU-Net using a
video clip of 6 frames outperforms the baseline approach on
all saliency metrics: KLD, SIM, NSS and CC (2.08, 0.28,
4.53 and 0.42 versus 2.16, 0.27, 4.34 and 0.39).

Index Terms— Fetal ultrasound, first trimester, gaze
tracking, video saliency prediction, U-Net, convolutional
LSTM, stochastic augmentation.

1. INTRODUCTION

Our interest is in automating the steps in first-trimester fe-
tal ultrasound (US) scanning. In this paper we focus on the
imaging guidance task and specifically on automating the task
of predicting where a sonographer should look next. Human
visual attention is typically quantified via the distribution of
gaze points, hereafter referred to as a saliency map. Our as-
sumption is that automatic prediction of saliency maps can as-
sist in the guidance to imaging planes, and hence potentially
help a non-expert with abnormality finding.

This work is supported by the ERC (ERC-ADG-2015694581, project
PULSE) and the EPSRC (EP/R013853/1 and EP/T028572/1). AP is funded
by the NIHR Oxford Biomedical Research Centre.

Related work: Salvador et al. [1] designed an encoder-
decoder network for semantic instance segmentation where
an encoder is used for classification and a decoder is com-
posed of a series of cLSTM layers merged with the encoder
outputs in the form of skip connections. Xu et al. [2] proposed
an LSTM multi-modal U-Net for brain tumor segmentation
using hyper-dense connectivity to leverage different MRI
modalities and temporal information. The authors first use
a multi-modal U-Net to produce a pixel-wise segmentation
mask which is then fed into the cLSTM. Unlike [1][2], we
use gaze-tracking data as a strong prior to guide the model
towards important US structures. Wu et al. [3] constructed a
SalSAC network for video saliency prediction which follows
a CNN-shuffle attention module-cLSTM pipeline. Similarly,
we use encoder-decoder with cLSTM in the middle. Yet, we
process the temporal input outside the spatial U-Net, pass it
through the cLSTM and feed into the bottom of the decoder.

Previous work on gaze prediction for fetal ultrasound has
been reported for the second trimester and first trimester [4,
5]. Savochkina et al. [5] investigated the prediction of spatial
gaze distribution for the first trimester ultrasound. However,
that approach could not differentiate between fast and slow-
moving video segments due to lack of knowledge of the pre-
vious frames. In addition to the trimester of application, our
approach is different to [4] in the use of spatio-temporal gaze
patterns together with US video in training. Specifically, we
utilise an encoder-decoder network with skip connections and
add temporal information to improve the saliency prediction
through cLSTM, exploiting the relationship between consec-
utive US video frames. Different from the above mentioned
works that achieve performance gains due to pre-training on
large image datasets, our model is trained from scratch.

Contribution: Our contribution is two-fold. First, we consider
video saliency prediction (VSP) from a first trimester multi-
modal US dataset. The model learns a mapping between
the US and ground truth (GT) saliency maps in routine first
trimester scans, predicting gaze for all structures and planes
that come into sonographer view. Second, we propose a new
variation of a U-Net [6] with feature sharing between 2 in-
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puts where an additional cLSTM module incorporates tempo-
ral information, learns an intra-dependence of frames within
a sequence, and enforces a better data representation.

2. METHODS

2.1. Data and Data Preparation

For our experiments, we use 115 first trimester US videos
and a total of 45, 666 video frames with a 60/20/20 train-
ing/validation/test split. We use the same data and preparation
steps that are detailed in [5].

The input to the spatial U-Net is a single frame which is
used to predict a saliency map, whilst the input for the cLSTM
is the combination of temporal frames and the same single
frame. We performed an ablation study, reported in Table 2,
to evaluate which placement of additional temporal frames
with regards to a single frame (before or after) adds the most
value to the model prediction performance.

To accommodate the cLSTM module, the data is sam-
pled as shown on the left of Fig. 1, where a fixed video seg-
ment is an input to the cLSTM. We take training samples
from the original video dataset using a shifting window that
is the width of the desired frame length. This way, we cap-
ture temporal variation without loss of temporal resolution, i.e
we sample with an interval of 1 frame, therefore, consider all
the temporal change. Each video contains 90 frames (3 sec),
therefore, the number of video segments that can fit in 3 sec-
onds is: # Video segments = 90 frames - Video segment. In
addition, we investigate different video clip lengths and select
one by its performance, as summarized in Table 1.

2.2. Gaze and Image Augmentation

To reduce over-fitting, we employ a Random Augmentation
(RA) strategy using stochastic augmentation policy search for
segmentation purposes [5][7].

We adopt a grid search with fixed magnitude schedule and
a total ofK=16 transformations, as in [5]. Each augmentation
policy is defined by n, which is the number of transformations
from the list of K an image undergoes, and m, which is the
magnitude distortion of each transformation. These transfor-
mations are applied to the mixed-example images (Mix.RA),
with which we share the m hyperparameter.

We empirically compared two random augmentation
(RA) strategies with tuple values n, m = {5, 5} and n, m
= {7, 9}, the two best results in [7] and [5], respectively. We
found RA with values n, m = {7, 9} gave superior segmenta-
tion results and have used these values in the results reported
subsequently; denoted as RA(7, 9). Out of all transforma-
tions in [5], we removed non-linear transformations which
are already stochastic in nature; these are elastic and grid dis-
tortions as they produce random magnitude transformations
for both, US images and their corresponding GT saliency

maps. We retain speckle as it only affects the quality of US
frames keeping the GT saliency maps unchanged.

The sequence data samples are augmented at random
whereas the type of augmentation transformation is shared
between each image in a sequence. Such a procedure is cru-
cial to preserve the temporal information of US frames and
the sonographer gaze pattern.

2.3. VSP Network Architecture

We experimented with a VSP architecture that takes two in-
puts. An overview of the network is shown in Fig. 1. The
cLSTMU-Net has two modules. U-Net is an encoder-decoder
network with skip connections, and cLSTM is a recurrent net-
work that manages a series of data that are chronologically
ordered. Our input consists of two parts, one is a single US
frame and the other is a sequence of frames preceding and
including the US frame in question. The first input is fed
into a spatial U-Net, and the second input becomes part of the
cLSTM module. US video frames and their corresponding
GT saliency maps are sampled from a video clip as described
in Section 2.1. The encoder layer structure is mimicked by the
temporal input. We adopt a time distributed layer as it shares
the weights between the images in a sequence, training them
in parallel. This way, we avoid excessive training time and
different detection of features that are not linked between the
images in an input sequence. We use cLSTM to extract dif-
ferent image features and preserve their chronological order.
The output of the cLSTM is fed into a decoder where after a
transpose convolution, it is concatenated with skip connection
from the corresponding encoder layer. The rest of the network
follows the structure of the decoder with a softmax activation
function applied to the final output layer.
Saliency Map Prediction: The datasetD = {(X(t), G(t))}Nx

t=1

consists of Nx pairs of video frames and gaze point sets.
Given an image and a gaze point set (X, G)εD, we gener-
ate a visual saliency map Sε[0, 1]HD×WD , where Si,j is the
probability that pixel Xi,j is fixated upon. The saliency map
is then used as the target for the predicted probability map
Ŝ. Around the gaze points in G, S is a sum of Gaussians
normalized such that

∑
i,j Si,j = 1. The saliency map yields

the training target S∗ε[0, 1]HD×WD . Finally, the training
loss is computed via the Kullback-Leibler divergence (KLD)
between the predicted and true distribution:

Ls(S∗,S) = DKL(S∗ ‖ S)

=
∑
i,j

S∗
i ,j · (log(S∗

i ,j )− (log(Si,j ))
(1)

3. EXPERIMENTS AND RESULTS

3.1. Network Implementation Details

A VSP architecture was trained from scratch via Adam op-
timization with a momentum of 0.01 and a learning rate of
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Fig. 1: Overview of the proposed architecture for video saliency prediction.

Table 1: Quantitative results of visual saliency prediction.
Sequence length is displayed at the top. The best performing
model is marked in bold.

RA(7,9) RA(3,9) Mix.RA(3,7) cLSTMU-Net(7,9)
Seq. length 1 1 1 3 6 9 10

KLD 2.16 2.27 2.28 2.22 2.08 2.11 2.22
SIM 0.25 0.27 0.26 0.23 0.28 0.26 0.25
NSS 4.19 4.21 4.34 4.16 4.53 4.41 4.06
CC 0.39 0.38 0.38 0.38 0.42 0.40 0.37

0.0001 with early stopping. The batch size was set to 16
across all models. The models were implemented in Tensor-
flow 2.1 on a Nvidia GTX 2060 Ti. Image manipulations were
performed with Pillow 7.1.2 and OpenCV 3.4.9 libraries.

3.2. Quantitative Results

Table 1 reports the average test scores for 3 best performed
spatial models from [5] and the spatio-temporal cLSTMU-
Net across different video clip lengths. Models are evaluated
using Kullback-Leibler divergence (KL), normalized scan-
path saliency (NSS), Pearson’s correlation coefficient (CC)
and Similarity metric (SIM) [8]. Particularly, the 3 models
include RA(7, 9), RA(3, 9) and Mix.RA(3, 7). The results
show that the spatio-temporal cLSTMU-Net RA(7, 9) using
a video clip of 6 frames outperforms all models on all metrics.

3.3. Representative Examples

Fig. 2 shows exemplary test results of the VSP model and
the comparative spatial-only models. The spatio-temporal
cLSTMU-Net network with RA(7, 9) using a video clip of
6 frames better localizes the nasal bone and rump than all
the other spatial-only models. Models are compared to the
GT gaze distribution (yellow). Since the training and vali-
dation data were divided scan-wise fulfilling the case for 90
consecutive frames, the frames are unseen by the network.

From the GT frames, the sonographer primarily focuses
on the nasal bone, nasal tip and checks the rump for guid-
ance during scanning. In the first three exemplary frames, 3
spatial-only models fail to predict the sonographer gaze. Our

Table 2: Ablation study on the placement of temporal infor-
mation in regard to the single frame. The best placement of
the temporal information is marked in bold.

Temporal Information
Before Before & After After

KLD 2.08 2.14 2.15
SIM 0.28 0.23 0.26
NSS 4.53 4.05 4.33
CC 0.42 0.38 0.39

cLSTMU-Net model shows an almost identical saliency map
prediction of the nasal bone and gives low probability values
to rump (white). The GT fixations are on the nasal bone with
extremely low probability assigned to the rump at frame zero.

The latter 3 frames show cLSTMU-Net steady adjustment
of the saliency prediction from the maxima around the palate
to the nasal bone, which is the correct saliency map loca-
tion. The less salient rump is correctly predicted in the last
2 frames, with slight misalignment towards the buttocks. The
alternative models focus on the bottom end of the palate. Only
RA(3, 9) over-estimates the gaze of the sonographer looking
at rump; the other models fail to localize the structure.

3.4. Ablation Study

We evaluated the impact that placement of temporal informa-
tion with respect to a single frame has on saliency prediction.
We performed an ablation study with results reported in Ta-
ble 2. A video clip of length 6 is used as an example. We
observe that the addition of temporal information before the
predicted frame adds the most value to saliency prediction.

4. DISCUSSION AND CONCLUSION

We presented a VSP network for first trimester US images.
The results show that the spatio-temporal cLSTMU-Net net-
work architecture with RA(7, 9) using a video clip of 6
frames outperformed all other spatial-only models. This can
be credited to the training of cLSTMU-Net in the spatio-
temporal domain which allows gradients to back-propagate
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Fig. 2: Six frames from an exemplary search sequence. The rows show the input frames, the ground truth saliency annotations,
3 spatial-only saliency models with the best metric results from [5] against video saliency predictions of cLSTMU-Net, respec-
tively. The relevant anatomical structures denoted in the last input frame (top right) include palate (P), nasal bone (N.B.), rump
(R) and nuchal translucency (NT). The ground truth is circled in yellow and cLSTMU-Net predictions are circled in white.

with respect to time and space which aids training. In con-
trast, the gradients of spatial-only models are solely back-
propagated with respect to each frame (i.e. only space).

The available computer memory could handle a video clip
of 10 frames. The best performing spatio-temporal model
used a video clip of 6 frames. For our dataset, we discov-
ered that 6 consecutive frames would account for good gaze
variation with more frames adding little useful information.
After performing an ablation study we found that adding tem-
poral information before the frame that the saliency map is
predicted for gave the best model performance.

Quantitatively, the KLD metric is highly penalized if any
GT fixation locations are missed, for instance the nasal bone
or rump in Fig. 2. In comparison to the three best performed
models from [5], the cLSTMU-Net led to a decrease in KLD
score of 0.08. SIM and CC metrics improved by 0.01 and
0.03, respectively. CC penalizes false negatives and SIM pe-
nalizes predictions that fail to account for all the GT density.
NSS is the only location-based metric, it benefits from the
temporal information with score increase of 0.19. The NSS
metric is sensitive to false positives which is seen in Fig. 2
showing no false saliency prediction on the NT.

In conclusion, the proposed cLSTMU-Net model is able
to better track changes in sonographer gaze compared to pre-
vious methods [5]. This may form the basis of a useful au-
tomatic guidance mechanism for real-time first trimester US
scanning where the saliency predictions direct sonographer
gaze to important anatomy. This may be investigated in our
future work.
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